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I Abstract
Ab \

VThe paper concerns solution manifolds of nonlinear parameter-dependent

* equations (1) F(u,A) = yA involving a Fredholm operator F between (infinite-
U3/4,t
.- dimensional) Banach spaces X = Z x X' and Y, and a finite-dimensional

.'b"/ , *
parameter space ,. Differential-geometric ideas are used to discuss the

connection between augmented equations and certain one-dimensional submanifolds

produced by numerical path-tracing procedures. Then, for arbitrary (finite)

dimension of , estimates of the error between the solution manifold of (1)

and its discretizations are developed. These estimates are shown to be

applicable to rather general nonlinear boundary-value problems for partial

4Z differential equations.
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1. Introduction

Considerable attention has been directed toward nonlinear parameter-

dependent equations of the form

(1.1) F(u,X) =

where F is a mapping from a Banach space X = Z x A to a Banach space Y,

Z represents a state space, and A an m-dimensional parameter space,

1 < m < -. Under appropriate conditions on F, the set of regular solutions

fl of (1.1) forms an m-dimensional manifold in X and it is of interest to obtain

both analytical and computational information about this manifold.

Since Z and hence X are usually infinite-dimensional, any computational

" examination of (1.1) requires the introduction of finite-dimensional approxi-

mations. Such approximations raise questions about the resulting error between

the solution manifolds of (1.1) and its discretized versions.

41 The estimation of this error between solution manifolds has seen relatively

limited activity, and most of that has been directed toward the case of a one-

dimensional parameter space A [3, [4], [6 ]. Since all numerical procedures

for analyzing the solution manifold of an equation of the form (1.1) involve

tracing one-dimensional submanifolds, consideration of this special case is,

in a sense, reasonable. However, it is generally not easy to construct a correct

4picture about an m-dimensional manifold from information obtained on certain one-

dimensional submanifolds. Accordingly, it is certainly desirable to derive error

" ""estimates for the general case of an m-dimensional parameter space.

This is the topic of the present paper. The definition of the errors under

consideration depends critically on the choice of the local coordinates on the

" .manifolds. After some preliminaries in Section 2, these local coordinates are

.. ..
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the topic of Section 3. Then in Sections 4,5,6 we consider in some detail

the idea behind the numerical procedures used to trace paths on a manifold.

Included here are the role played by augmented equations and their use in

characterizing points on the manifold.

Then in Section 7 we extend the error estimates developed in [4] to

the general situation of m-dimensional solution manifolds. These results

allow for the study of approximations of such manifolds directly, without

recourse to paths. The arguments of Section 7 depend on the validity of a

certain stability condition whose implications and various reformulations are

the topic of Section 8. Finally, two examples, in Section 9, illustrate the

theory and show, in particular, that it applies to a very wide class of boundary-

value problems for partial differential equations.

0C
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2. Preliminaries

Throughout this paper, we shall use the following assumption:

i F: E CX Y is a Cr-Fredholm mapping with r > 1 and index

(A) m > 1 from an open subset E of a Banach space X into a

Banach space Y.

* - As usual, a point x e E is a regular point of F if DF(x) is surjective.

. For any yo e F(E), our interest centers on the regular-solution set

(2.1) M= {x e E: x regular, F(x) = yo},
.0

of the equation

(2.2) F(x) = yo"
I0

The fundamental result concerning the structure of M is contained in the

fol lowing theorem proved in E4].

Theorem 2.1: For any y0 e F(E), the regular solution set M is a relatively

open, m-dimensional C r-manifold in X.

The notion of parametrization introduced in [ 4] extends easily to the

L: manifold M. However, we modify the terminology somewhat in order to be

consistent with the customary language of differentiable manifolds and bi-

furcation theory.

L For any x0 e M, let TxoM denote the tangent space of M at xo. In

our setting, we can identify T M with ker DF(x ). Let X = V @D T be any
00

splitting of X such that dim T = m and VCI T M = {M}. With any suchxo

* . ~ . -.0
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splitting, it is always possible to define an isomorphism A: Y V of
Y onto V. In particular, the splitting X = V T xM with any comple-

mentary subspace V of T M and the isomorphism A- (DF(xo)IV) has IA

important applications in the reduced-basis technique (see [5]).

The following theorem is an immediate generalization of the corre-

sponding result in [4). Its proof involves an application of the implicit

function theorem.

Theorem 2.2: Let yo e F(E), X = V T be a splitting as above at a given

point xo c M, and A: Y -) V an isomorphism of Y onto V. Then there

exist an open ball J C T with 0 e J, an open neighborhood U c X of x0

and a unique Crfunction n: J -+ Y such that n(O) - 0 and

W_

M 1U = {x e X: x = x(t) E xo + t + An(t), t c J}.

This theorem justifies the use of the word parametrization in [4].

However, since we wish to reserve the word parameter for another concept, we , .

have to carry the result of Theorem 2.2 somewhat further.

Corollary 2.3: Under the conditions of Theorem 2.2, there exist an open

ball J C J with 0 e J and an open neighborhood U Q U of x o such

that to +x(t) x0 + t + An(t) is a Crdlffeomorphism of J0  onto MrU o .

Proof: From F(x(t)) = 0 for t e J, it follows that DF(x )x'(0) = 0 and
0

hence, since T and V are complementary subspaces, that x'(0): T T M
X0 .

is an isomorphism. Let W be any complementary subspace of T M in X

and define

: J + WCX X, (x) x(t) + w, x t + w C J + W.

, " ' ,-',"~~~~~~~. ' _ . - -: - -. -K. - . .. ,. _ . ..
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Then we have

.() = x'(O)T + W, -r + w E: T xx=

and thus 0'(0) is an isomorphism of X. By the inverse function theorem,

. maps a neighborhood of 0 Cr-diffeomorphically onto a neighborhood of

- 0. Hence, because of O(t + 0) = x(t), the result follows.

The inverse of the mapping x: M MIU is a chart or coordinate
0 0

mapping at xo  of the manifold M and such mappings are often said to

S-" define a system of local coordinates on M. For that reason, we call a

splitting X = VST such that dim T = m and VI = {0 a coordinate

" splitting for M at x o  M, and we refer to T as a coordinate space.

g.
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3. Parameters as Coordinates

It often happens in applications that certain quantities are naturally

identified as parameters. This means that there is an intrinsic splitting

X = Z @ A of X, where A is an m-dimensional parameter-space and Z

represents a state space. Such a splitting of X will be called a parameter

splitting. It is natural to attempt to use the parameter space A as the

coordinate space T of a coordinate splitting, and the question arises when

this is possible.

In order to provide an answer to this question, we suppose for the re-

mainder of this section that a parameter splitting X = Z 0 A is available.

Moreover, for a given yo e F(E) let M denote the corresponding regular-

solution manifold (2.1) and xo  any point of M.

The suitability of A as the coordinate space T of a coordinate

splitting depends on the subspace

(3.1) Z= Z H X M.

If Z= {O1, then clearly X = Z$ A is a coordinate splitting for the mani-

fold M at xo . But if Z # {0} then ToM has a nontrivial component

in Z and hence we cannot use all of A as the coordinate space T.

Minimally we should exchange Zo  for a part of A not meeting T M.

To this end, let II be the natural projection of X onto A along Z ..

and define the space

(3.2) Ao = IT M.

Moreover, the following nota..Q,, wi' be convenient: If W is any Banach

space and Wo C W a closed subspace which splits W, then W OW O  shall

0~- . - - - - --
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U denote any closed complementary subspace of W in W.

": Some important properties about the subspaces Z and A are con-0 •0

tained in the following lemma.

Lemma 3.1:

(i) dim Ao  m -dim Zo.

(ii) o =A (Z + ToM).

* (iii) Z A o = Z + T xM.

[(iv) (ZeZ) (AEAo)]nTxoM= {0}.

3 Proof: The proof involves only elementary notions about subspaces. Clearly

i) needs no elaboration. To prove (ii), let X c A0. Then X = z + u for

s,...4 u E T M and any z e Z, whence X e An (Z + T M). Conversely, ifxox

* the latter inclusion holds for some A then X = z + u for some z e Z,

. u e T xM and X = I = flu e Ao . In (iii) the containment Z OAo C Z + Tx M

- . is obvious in view of (ii). To show the reverse, let x = z + u, z e Z,

- u E TxoM. Then there exist z' e Z, X e A such that x = z' + X, whence

"" A = (z-z') + u c Z + T M and thus X E Ao by (ii) or x s Z9Ao . Finally,

let u belong to the set on the left of (iv) and u = z + X, z c Z, X E A.

Then X = -z + u s Z + TxoM = Z@)A o , whence X E Ao  and X E o ( (AGA o) = {O}.

As a result we have u = z c ZGZ o C Z and therefore u E Zn TxM= Zo

which implies that x e Z (I (ZG Zo ) - {0}.
0 0

The above facts can be combined to give the desired theorem on coordinate

splittings.

LI

°'. ...........................................
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Theorem 3.2: In addition to assumption (A), let X = Z@A be a param-

eter splitting of X, yo e F(E), and x0  a point of the corresponding

regular-solution manifold M. Let Zo = Z ToM and Ao = TxM, where
0 0

II is the projection onto A along Z. Then X = [(Z E Zo) 0 (A( A0 )]

s [Z( D A0  is a coordinate splitting for M at xo .

This theorem is illustrated in the next section. .

bi

.

4.

4 o
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* i.. , 4. Parameters and Integral Manifolds

All currently available numerical methods for analyzing a solution mani-

* fold of a parametrized equation involve the computational trace of one-

dimensional submanifolds by means of a continuation process. These one-

dimensional submanifolds are usually defined by combinations of the natural

parameters with one degree of freedom and the specification of a starting

. point. In differential-geometric terms, this means that we compute specific

integral manifolds of certain 1-distributions on the manifold.

Before we define these notions explicitly, an example to illustrate

the situation may be in order. Consider the buckling of a spring system

discussed in [ 9 ; pp. 301-305]. After a suitable scaling, the total energy

of the system is

U(p,q,X,v,y) = (l-p) 2 + Iy(2q) + 2Xpcosq + vpsinq,

where p,q are displacements (the state variables) and the parameters Xv,y

represent applied forces and a spring constant, respectively. The spring

• - constant y is intrinsically positive. As a result, the equilibrium equation

is

[-2(l-p) + 2Xcosq + vsinq

(4.1) F(x) = = 0,

4yq - 2Xpsinq +vpcosqJ

" where F: ECIR5  IR2  is a Cm-mapping on E {x = (p,q,X,v,y)T E: y > 0}.

It is easly verified that all points of E are regular for F and that

0 e F(E). Consequently, the equilibria of the system correspond to points on

the three-dimensional manifold M = {x e E: F(x) = 0}. The natural parameter
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splitting X = Z (A associated with the parameters x,v,y is obtained by

setti ng

(4.2) Z =(p~q,OO)T}, A {(0,0,X,v,y) T}.

As indicated before, we introduce now some combination of parameter

value, with one degree of freedom. The simplest approach is to fix two

of the above three parameters, say v = O = This is equivalent to the
8

introduction of the augmented equation

F(x) 0
(4.3) G(x) [0 ) = [-]

Y .

where G: E CIR5 - IR4  is still of class C on E, but now not all points

of E are regular for G. For example, at xo = (I,0, ,0, e E,T

DG(x ) has rank 3 whereas, of course, the rank of DF(x ) is 2.

The point xo  , is an example of a point where the

natural parameter splitting (4.2) of the original problem is not a coordinate

splitting and Theorem 3.2 comes into play. For this particular xo, we have

that

TxM= ker DF(xo ) = {(p,q,-pO,y)T},
*x 0 0

and hence that

Zo Z Tx M) }9
= Z M q,0

(4.4)

Ao = T ={(O,O,,O,Y)

..
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By Theorem 3.2, we see that

X= [(Z Zo) ( (A C Ao ) ] ® [z o 0 Ao1

(4.5)

T T
= {(pOO,,,O) 19 {(O,q,X,O,y)T }

'.-. is one possible coordinate splitting for M at xo.

Generally, let M denote any finite-dimensional Hausdorff manifold of

" class Cr, r > 1. We again denote the tangent space of M at a point x c M

by T M and write TM for the tangent bundle. Recall that a vector field

of class CP , I < p < r, on a relatively open subset Mo rM is a CP-mapping

. : N - TM such that E(x) e TxM for each x e Mo .M oreover, a 1-distribution
0 X

A of class Cp  on M is defined by the following two properties:

(i) A is a mapping A: M0  TM such that A is a one-dimensional

subspace of T M for each x e No.

(ii) For each xo e Mo , there exist an open neighborhood U of xo

in X and a vector field t: Mo 0 U -. TM of class Cp  such that

Ax  span {1(x)} for all x E Mo/1 U.
0

A one-dimensional submanifold N of M0  is an integral manifold of A on

M0  if for every x c N the tangent space TxN is equal to Ax. For an

introduction to these concepts see, for example, [11).

For our simple example, let EoC E be the open set of all regular

points of G and set Mo = MOE 0 . Then A: Mo - TM, Ax = ker DG(x),

x e M0 , is a mapping which associates with each regular point x e MO  a

one-dimensional subspace of the tangent space TxM. In this case, it happens

. to be possible to define a global vector field on Mo  which satisfies the

. .. . . . .-•.... .
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second condition of a 1-distribution. In fact, for any x e E a vector

5
t(x) E R is uniquely defined by

DG( )
(4.6) DG(x)(x) = 0, I11(x)11 2 = 1, det > 0, -

and it is readily verified that the mapping x E(x) is of class Cr-1

on E and hence a Cr-l-vector field on Mo. This shows that A is indeed

a 1-distribution of class C on Mo.

The point xT = 0• O turns out to be a singular point of the

vector field . In fact, for the value of y = 1 the bifurcation set in the

Xv-plane consists of a butterfly and touching dual cusps (see Figure 1 and

[91). The dual-cusp point corresponds to xo-

The global definition (4.6) of the vector field is possible only in

the finite-dimensional case. However, we do not need a determinant to define

an orientation of a local vector field in a neighborhood of each x c MO-

In other words, it may be expected that augmented equations of the form (4.3)

always define 1-distributions on certain relatively open submanifolds Mo of

M. The numerical methods mentioned earlier are then designed to compute

specific integral manifolds of such 1-distributions. The connection between

augmented equations and certain 1-distributions is taken up in detail in the

next section. Once augmented equations are associated with 1-distributions,

they can then be used to classify an arbitrary point of M and to provide

an alternate formulation of Theorem 3.2. This is the topic of Section 6.

Our example shows that the singular behavior at the point x0 = (1• 0• O09

arises only because we considered a particular parameter combination and the L

corresponding 1-distribution. Otherwise, the point is regular for F. More-

over, instead of fixing v = 0, y = and letting X vary as we did in (4.3),

07.
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Li,
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we may fix v = Y = and allow v to vary. Then we are led to the

augmented equation

F(x)1 0

(4.7) G(x) K I =

.L J

For this new G, DG(xo) has rank 4 so that x now becomes a regular

point of G. This opens up the possibility of considering numerical methods

which avoid the singularity entirely by working with other more suitable

1-distributions such as that defined by the augmented equation (4.7). I"

S. ...
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5. 1-Distributions and Augmented Equations

In the last section, we discussed the idea behind continuation methods

for analyzing solution manifolds of parametrized equations and how parameter

combinations lead to 1-distributions and one-dimensional integral manifolds.

In this section, we consider the relationship between such integral manifolds

and certain augmented equations.

Throughout this and the next section, let M denote the m-dimensional

- crmanifold (2.1) of the equation (2.2) and assume that X = Z A is a

parameter splitting of X. A combination of the natural parameters with one

degree of freedom corresponds to the choice of a one-dimensional subspace

. -.' S CA which defines the remaining degree of freedom. We call S a reduced-

parameter space and any splitting X W S with Z CW a reduced-parameter

splitting. For example, in (4.3) the reduced-parameter space is

S = {(O,O,X, 0 ,0)T}, whereas in (4.7) S = {(O,OOv,O)T}.

Suppose now that A: M° - TM is a 1-distribution of class Cr'l on

p some open set MoC M for which TIAx = S for all x c MO . As in Section 3,

I denotes the projection of X onto A along Z. Clearly, the condition

IIAx S is equivalent to Ax CZ 9 S. We call a 1-distribution with this

property a 1-distribution with respect to S.

1-distributions with respect to S can be discussed conveniently in

the context of certain augmented forms of the equation (2.2). For any given

reduced-parameter space S, there exist linear operators L: A -]Rm-I with

ker L = S. With any choice of such L, we define the augmented mapping

(5.1) G: E C X V ]km-, G(x) = (F(x),LTIx), x e E,

and with it the augmented equation

L

4.Q . % . - . ,. .
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(5.2) G(X) =(y OLna0 ).

where a X is as yet arbitrary. For example, in (4.3) and (4.7)

L: A ,,, 2 is defined by

0o 0 0 1 1 [0 0 00 1

respectively.

A number of useful facts about (5.1) are collected together in the

following technical lemma .

Lemma 5.1: Let x 0 e M. Then:

() OG(x )is a Fredhoim operator of index 1.0

(ii) DF(x )IZ, and hence DG(x )IW, is a Fredholm operator of index 0.0

(iii) ker DG(x 0) T xM (Z QDS).

(iv) Z E Z f)Tx M W kerDG(x)

(v) sO nIT M ={O} if and only if =o ker DG(x0).

Proof: Note that

DG(x) (DF(x ),LI) =(OF( xd),) + (0,Lfl),

where (DF~x0),0): X -~ Y 1~ is a Fredhoim operator with index rni

and (0,L11): X -~ Y xim1is a compact operator. This implies that 0I) holds

* (see [10; p. 114)). The injection j: Z -'X, jz =z, z c Z. is a Fredholm
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U g. operator of index 0 - m = -m. Therefore, DF(xo)IZ = DF(xo)j is a

Fredholm operator with index m - m = 0 ([10; p. 111]) which proves (ii).

Now (iii) follows directly from the definition of G and the fact that

Su ker DG(xo ) if and only if u e ker DF(x o )T M and lu E ker L = S.
0 0 0

Furthermore, (iv) is a consequence of (iii) and ZC W. Finally, to obtain

(v), we note that

". - Sir A ={O}<=> n(T xM f(ZSS)) = {0}

0 x0

<=> Riker DG(xo) = {0} by (iii)

<=> ker DG(xo ) C Z
0

<=> ker DG(xo) = Zo  by (iv).

I

This completes the proof.

I Note that none of the assertions of the lemma depends upon the particular

choice of L in the definition of G. A consequence of part (iii) is the

following connection between 1-distributions with respect to S and augmented

equations.

Theorem 5.2: Let X = W 0S be a reduced-parameter splitting and A: M°  TM

a 1-distribution with respect to S of class Crl on a relatively open set

M C M. Moreover, let G be an augmented function (5.1). Then Axc ker DG(x)
0
for any x E M0  and hence any integral manifold N of A on Mo  is a

solution manifold of the augmented problem (5.2), where a0 is a given point

of N.

-.

A.o
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So far, we began with a 1-distribution with respect to S and then

related it to an augmented equation. In practice, the starting point is

• .:.- usually an augmented equation which is then used to characterize and ..-

determine a 1-distribution with respect to S. This was the procedure we

followed in the example of the previous section. How this can be accomplished

in general is our next goal.

As before, let X = W S be a reduced-parameter splitting of X and

G an augmented function (5.1). We denote by EoC E the open set of all

regular points of G and set Mo = M E
0

Theorem 5.3: The mapping A: M°  TM, Ax = ker DG(x), x e Mo, is a 1-

distribution with respect to S of class Crl on Mo . Moreover, if r > 2,

then for any given a0 Mo  the regular-solution set of the augmented

equation (5.2) is an integral manifold of A on M.

Proof: By Lemma 5.1(i), DG(x) is, for any x c Mo, a Fredholm operator of

index 1 and since DG(x) is surjective we must have dim DG(x) = 1.

Consequently, the mapping A is well-defined and by Lemma 5.1(iii) we have

Ax = Tx MO(ZOS) for x e Mo . Therefore, it remains to verify only the

second property of a 1-distribution. By the theory of Fredholm operators [2],

[10), for xo F M , there exist a vector uo c X and a continuous linear

functional o e X* such that A ker DG(x o ) span{uo}, *o(Uo) ,1o.
0x00 0 0 0

and X = ker o  Ax. The mapping0 x0 ..

00
0H: E x X Y xJR, H(x,u) =(DG(x)u,I-o(u)). (x,u) c E xX,"

is of class Cr'l and satisfies H(xU 0 ) -- 0. As in the proof of part (i)

L



L7- .- . % .-- - -. g

19

of Lemma 5.1, the partial derivative

D H(x u ) (DG(x )-.0) + (0-c(U 0 0 0 0

is the sum of a Fredholm operator of index 0 and a compact operator and

hence is itself a Fredholm operator of index 0. If D H(xo,uo)v = 0,

• -.i then v c ker (o Ao {0}; that is, D H(xoUo) is an isomorphism. By

• the implicit function theorem, there exist a nieghborhood U of x in X

and a Cr -mapping : U X such that

H(xF(x)) = (DG(x)E(x),l-*o( (x))) = (0,0), x c U.

Therefore, : Moftl U TM is a local vector field and Ax = span{ (x)}

S for x e M 0( U. This completes the proof that A is a 1-distribution with

respect to S of class Crl The second part follows from the standard

existence and uniqueness theory for flows since we assumed r > 2 (for

1 example, see [ 8]).

Theorem 5.3 guarantees that the regular-solution set of an augmented

equation can be used to determine an integral manifold. But an augmented

function (5.1) is defined on all of E; that is, an augmented problem can

- also be considered at nonregular points of the augmented function. We consider

this topic in the next section.

L

% - - . - % - . - " . . -. *. * . ~ . . . .
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6. Characterization of Points Using Augmented Functions; Coordinate Splittings

We continue the development begun in the previous section and consider

how an augmented function can be used to characterize the nature of an

arbitrary point on the regular-solution manifold M of equation (2.2) with

respect to a given parameter splitting X = Z A and reduced-parameter

space S. Theorem 5.3 applies only on the submanifold M0  of M consisting

of the regular points of the augmented function. Nevertheless, any augmented

function is defined everywhere on M and, as noted earlier, that observation

enables us to use an augmented function to characterize different types of

points on M.

A general examination of the possible types of points on M is not our

intent. Instead, we consider three commonly occurring cases which arise

frequently in practice. The following definition is based upon fairly

standard terminology.

Definition 6.1: Let X = W O S be a reduced-parameter splitting and G any

corresponding augmented function (5.1). A point xo c M is a

(i) nonsingular point of G if dim ker DG(x o) = 1 and

Wfl ker DG(xo) = {0};
0

(ii) limit point of G if dim ker DG(xo) = 1 and

ker DG(xo0 C W; and-

(iii) simple critical point of G if dim %er DG(x o ) = 2 and
0

dim {Wn ker DG(xo)} = 1.
0

Note that this definition depends only on W and S and is otherwise in-
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U t dependent of the choice of G. In fact, the definition involves only W

and ker DG(xo) and, in view of Lemma 5.1(iii), ker DG(xo ) depends only

* on S and not on the particular choice of the linear operator L: A - 2ml.

m Also, we remark that nonsingular points and limit points of G are regular

points of G.

For the three cases, we may characterize completely the nature of a

point x0  M in terms of the subspaces Zo = Z A T xM, A° = ITT xM, and
0 0S. In the following discussion, we assume the setting of Theorem 3.2, (5.1),

and Definition 6.1. We also assume that r > 2 in assumption (A) (in order

* -to apply Theorem 5.3).

We begin with the case Z= {}. Then from Lemma 5.1(ii) and (iv),

. it follows that xo  is a nonsingular point of G. By Theorem 5.3 (withm0
ao = x0 ) and Theorem 3.2 (applied to G), X = W( S is a coordinate

.. splitting for the regular-solution submanifold of the augmented problem

(6.1) G(x) = (y0,LIIx 0 )

at xo. Moreover, by Lemma 5.1(iv) and Theorem 3.2 (applied to F),

X = Z A is a coordinate splitting for the manifold M at xo -

Next we assume that dim Zo = 1 and SA = {O}. From Lemma 5.1(v),

it follows that xo  is a limit point of G, and Theorems 5.3 and 3.2 imply

* that X = [(W(e Z ) 0S]ED Z is a coordinate splitting for the regular-
0 0

solution submanifold of the augmented problem (6.1) at xo. (Note that the

use of Zo = ker DG(xo ) as the coordinate space is the basis for the

Lyapunov-Schmidt procedure [12).) To extend this coordinate splitting for

_ •the submanifold to a coordinate splitting for the full manifold M, we

combine Lena 3.1(i) with Lemma 5.1(v) to conclude that S 0 = A and

* * - - -- - - - * * -
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then use Theorem 3.2. This shows that X = [(ZG Z 0 S]@ [Z 0(A ] is 4
a coordinate splitting for M at x

0-

Finally, let dim Zo = 1 and SOI Ao  {O} (that is, S A = S).

Again from Lemma 5.1, it follows that x°  is a simple critical point of G.

Although DG(x ) remains a Fredholm operator of index 1, its null space is
0

now two-dimensional and x0  is not a regular point of G. Nevertheless, x0

is still a regular point of F and the manifold M does have coordinate

splittings at xo. In particular, by Theorem 3.2 once more,

X = [(ZGZo)0 (AOA)](1 [Zo0 0 A0 is a coordinate splitting for M at

xo. It is important to observe that now S is not an acceptable choice for

the complementary subspace AGO A
0

We summarize the above results ci coordinate splittings in our next

theorem.

Theorem 6.2: Assume the conditions and notation of Theorem 3.2, (5.1), and

Definition 6.1.

(i) If Z= {0}, then xo  is a nonsingular point of the augmented

function G; X = W 0 S is a coordinate splitting for the regular-

solution submanifold of the augmented problem (6.1) at x0 , and

X = ZO)A is a coordinate splitting for the regular-solution mani-

fold M of (2.2) at xo.
I0

(ii) If dim Zo = 1 and S( o = {0}, then xo  is a limit point of

0the augmented function G; X = [(W 0) Zo0) 9 S] Z Zo  is a coordinate

splitting for the regular-solution submanifold of the augmented

problem (6.1) at xo , and X = [(ZE Z ) DS] [Zo $A o] is a co-

ordinate solitting for the regular-solution manifold M of (2.2) at

X
0 1

"-i') i i • i i m iw~ l mm mm m m m m m "i m"maia. . . . . . .. ,.
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(iii) If dim Z= 1 and S ( A # {0}, then x°  is a simple critical00

point of the augmented function G; X : [(Z® Z ) @ (AG A )]( 0[Z 0 Ao0 0 0 0

is a coordinate splitting for the regular-solution manifold M

of (2.2) at xo. Here, S is not an acceptable choice for AG Ao"

Thus, from a knowledge of the subspaces Zo, A0, and S alone, we are

able to characterize the nature of the point x with respect to a combination

of parameters. In Theorem 6.2(iii), it is not possible to identify the type

of simple critical point because that would require an examination of second

and higher derivatives. However, it is interesting to note that the coordinate

*splitting for the manifold M is independent of the type of simple critical

point at x0 ; in other words, it is not necessary to know the type of simple

* critical point when choosing a coordinate splitting for M.

*To illustrate this theorem, we return to the problem of the buckling of

a spring system mentioned in Section 4. With xo = , ,) we

U calculated Z and A in (4.4). Therefore, according to Theorem 6.2, since
0 0

dim Z= 1, xo  is either a limit point or a simple critical point of any

augmented function G. The augmented function G of (4.3) is associated with

the reduced-parameter space S {(0,0,,0,0) T} for which S A A {0}. By

Theorem 6.2(iii), xo must be a simple critical point of that augmented

function and (4.5) is a coordinate splitting for the regular-solution manifold

of (4.1) at x0 . On the other hand, the augmented function G of (4.7) is

Tassociated with the reduced-parameter space S = {(0,0,0,v,O) for which

SA = {0}. By Theorem 6.2(ii), x0  is a limit point of that augmented

T T
* function; X = {(p,O,xv,y) } Q {(O,q,O,O,O) } is a coordinate splitting for

the regular-solution submanifold of the augmented problem (4.7) at x0 , and

(4.5) again serves as a coordinate splitting for the regular-solution manifold
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of (4.1) at x.

0W
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• :7. Finite-Dimensional Approximations and Error Estimates

We consider now the fundamental problem of determining suitable approxi-

mations to the regular-solution manifold M of the equation (2.2) and of

obtaining corresponding estimates for the error. As it turns out, the dis-

cussion in [4 ] applies essentially unchanged to the case of an m-dimensional

manifold. Therefore, we merely introduce the notation and state the principal

results in our current, more general setting and refer to [4 ] for the proofs
...

which are easily extended to this case.

As always we assume that the information in (A) is given. To formulate

an appropriate approximate problem for (2.2), we remark that in applications

it is the state variables and not the natural parameters which are discretized.

With that in mind, suppose that a parameter splitting

- (7.1) X= ZI A (dim A =m)

* of X is available and that Z and Y are related through an operator Q

as follows:

Q c L(X,Y), ker Q = A,

.(7.2)

QIZ is an isomorphism of Z onto Y.

* A discretization of the problem (2.2) is specified by a collection {Ph: h > 0}

of firite-rank projections Ph E L(Y) converging strongly to the identity on

Y; that is,

(7.3) lim Phy  y9 y Y.
h.O
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The projections Ph and the operator Q determine finite-dimensional sub-

spaces

(7.4) Yh P Y' Zh = (QIZ)'Yh, Xh = Zh 4D A,

and out interest is directed towards the regular-solution manifold

(7.5) = {x F Eh: x regular, Fh(X) = Yoh.

of the equation

(7.6) Fh(x) = Yoh' Yoh = hYo '

where

(7.7) Fh: Eh Xh Yh' Fh(X) = PhF(x), x F Eh = E (IXh.

We refer to the information contained in (7.3)-(7.7) as a basic discretization P

of the problem (2.2).

It is easier to compare a discretized problem (7.6) with the original

problem (2.2) if both are formulated on the same spaces. A convenient way

of doing this is to extend the discretized mapping Fh to all of E C X by

defining

(7.8) Fh: E CX Y, Fh(X) = (I-Ph)Qx + Ph(F(x)-Yo), x e E,

where I denotes the identity on Y.

Some important properties of Fh and its connection to a discretized

problem (7.6) are summarized in the next lemma.

6i

• -. . . ..,: . .. , . ; , ' - . . - - .... • ,.- -. . . . .
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Lemma 7.1: h is a Cr-mapping with the following properties:h

.i) Fh(x) =0 for xE E if andonly if xE Eh and Fh(x) oh

(ii) DFh(x)Xh C Yh, x E E.

(iii) ker DFh(x) Xh, x E E.

(iv) DFh(x) c L(X,Y) is a Fredholm operator of index m for x e E.

(v) PhDF(x)Xh = Yh for some x E E implies that x is a regular point

S of F

To compare the regular-solution manifolds M of (2.1) and Mh of (7.5),

let x0 be any point of M. Moreover, let X = V* T be a coordinate

splitting for M at xo  and A: Y - V an isomorphism of Y onto V. The

relationship between the coordinate splitting and the above basic discretization

1 is expressed in the following stability condition:

(S) IIDFh(xo)AYl >6Il1, y e Y, h > 0 sufficiently small,

where 6 is a positive constant independent of y and h. A detailed dis-

cussion of the implications of this stability condition, including equivalent

formulations, is deferred to the next section.

The stability condition (S) combined with generalized versions of the

inverse and implicit function theorems enables us to obtain the main result

regarding existence of approximate solutions and error estimates.

Theorem 7.2: (1) Let yo E F(E), X = ZIA a parameter splitting of X,

X.= V0T a coordinate splitting for M at a given point xo c M, and
L w~l0
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A: Y * V an isomorphism. Suppose that an operator (7.2) and a basic dis-

cretization are chosen so that the stability condition (S) is satisfied.

Then for all sufficiently small h > 0, there exist Xoh e Mh  such that

*lim x 
oh

oh -- xoh

(2) In addition, assume that r > 2 and let x: J T - M be a

Crfunction representing the manifold M locally.near x0  as given by "

Theorem 2.2. Then there exist a compact ball J = J, 0 E Jo and Cr-

functions xh: Jo - M representing the approximate manifolds Mh locally

near xoh such that

(7.9) Ijx(t)-xh(t)II < CII(I-Ph)Qx(t)II, t s J

where C is independent of h and t.

Actually, we can say more. It turns out that, for sufficiently small h,

X = V T is also a coordinate splitting of X for each Mh  at xoh. -

Moreover, if x: J M M is written as x(t) = xo + t + An(t), then each

Xh: Jo Mh has the form Xh(t) = xo + t + Anh(t). The proof of Theorem 7.2

follows verbatim the corresponding proof in [4 J.

-

.....................................
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* 8. Discrete Convergence and Stability Conditions

A central requirement of the theory in the previous section is the

condition (S). We formulated (S) as a stability condition similar to those

arising typically in convergence studies of discretization methods. In

, certain practical situations, (S) is readily verified. For instance, in [4].

we used decompositions F(x) = N(x) + G(x) with Q = DN(x ) and compact
0

DG(x ), in which case the stability condition (S) holds for any coordinate
0

splitting.

Nevertheless, the need remains for other necessary and sufficient conditions

for the validity of (S) and for a closer analysis of the interplay between

the quantities F, Ph' Q, and A entering into (S). This is the topic of the

" .. present section.

We follow Vainikko [13] in the following formulations of various types

of discrete convergence. A sequence <Xn> of elements in a Banach space X

is called discretely compact (d-compact for short) if every subsequence of

<Xn> has a convergent subsequence.

Let Bh (h > 0) and B be bounded linear operators from a Banach space
xh

. to a Banach space Y such that Bhx -+ Bx for all x E X.

The convergence Bh - B is regular, denoted by Bh r B, if

(8.1) <Xh: hn O 0> bounded, <Bh Xh > d-compact => <Xh > d-compact.
n n n n

The convergence Bh - B is stable, denoted by Bh B, if

(8.2) B-1 exist and are uniformly bounded for sufficiently small h.

41 The convergence Bh B is compact, denoted by Bh  Bif

0 (8.3) <Xhn hn  O> bounded -> <Bh x > d-compact.
n n n
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Looking back at our condition (S), we note that

DF (x )Ay (I-Ph)AY + PhDF(xo )Ay - DF(x )Ay, y E Y,

and that (S) is equivalent with stable convergence - that is, with

(8.4) DFh(xo)A DF(xo)A.

A less obvious equivalence is the content of the following result.

Proposition 8.1: The convergence condition (8.4) and hence the condition (S)

holds if and only if DFh(xo)A D DF(xo)A.

The proof follows directly from a theorem of Vainikko [13; p. 655] and the
observation that rge DF(x )A = Y, ker DF(x )A = {0}, and each DFh(xo)A

0 0h

is a Fredholm operator of index 0.

Both regular and stable convergence involve a complex interplay among

F, Ph' Q , and A. The following sufficient condition for (S) is helpful

here.

rt
Proposition 8.2: If Ph(-Q+DF(x o))A $ (-Q+DF(x ))A, then DFh(xo)A 4- DF(xo)A

and hence (S) holds.

Proof: From Dr (Xo)A = QA + (-Q+DF(Xo))A, it follows that QA is a

Fredholm operator of index 0. If QA is an isomorphism, then we have trivially -.

QA , QA and rge QA = Y, and the result follows immediately [13; p. 654]. If

QA is not an isomorphism, then by the Fredholm nature of QA and with - b

Yo = ker QA, Y3 = rge QA there exist closed subspaces Y1  and Y2  of Y

such that Y = Y0 Y = Y2 GY 3 ' dim Y0  dim Y2 
<  and QA is an

2.. . .
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1 U isomorphism of Y onto Y3 " Set Vo = AYo = Vt(A and V1 = AY1 ; then

V V=V0 V 1  Let Vo =XG (V1 DA) and V=9 V1. Since dim o dim V,
0 010 10 0

: there exists an isomorphism B of V0  onto V and with the projection P
0 0I of Y onto Y0  along Y1 we may define the isomorphism

A: Y V, Ay A(I-P)y +BAPy, y Y.

Then QA is an isomorphism of Y and

•o = QA + Q(A-BA)P + Ph(-Q+DF(xo))A.

We now have trivially QA 1 QA and rge QA = Y, and thus

Q(A-BA) + Ph(-Q+DF(xo ))A £ Q(A-BA)P + (-Q+DF(x ))A.

-4

The result follows again as above [13; P. 654].

S As suggested, the converse of Proposition 8.2.*is not true. For example,

let Y be an infinite-dimensional separable Hilbert space and with X = Y x JR

consider the function

F: X+ Y, F(x) y, x (y,) c X.

For a coordinate splitting X = VOT, take V = Y x {0} and T = {0} xIR,

and define A: Y - V by Ay = (y,O) for y c Y. The operator Q: X -Y V

- is defined as Qx =y for x= (y,A) E X and, if {ei} is an orthonormal

basis for Y, the discretization projections Ph are taken to be the orthog-
. 1lFl onal projections onto the subspaces spanned by e1 ,...,en with n < h <

n nl
.•Then we have, for any xo ,

* ,*..,' -*'. ..- . .
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Dh(Xo)A =I + 1 Ph r 3 = DF(x )A,

but

Ph(-Q+DF(xO))A = Ph -1 = (-Q+DF(xo))A.

In applications, the choice of Q is at our disposal and a suitable

choice of Q may ensure the validity of (S). In our example, the slightly

different operator Q defined by Qx = 2-y for x = (y,X) e X turns out

to allow the application of Proposition 8.2.

Compact convergence does not appear to be any easier to verify than

either regular or stable convergence, and so Proposition 8.2 mainly has

theoretical interest. Our next result is a step towards rectifying that.

Proposition 8.3:

(i) If (-Q+DF(xo))A is a compact operator, then

Ph(-Q+DF(xo))A $ (-Q+DF(x ))A.

(ii) If Ph(-Q+DF(xo))A (-Q+DF(xo))A and if Y is separable,
h0

then (-Q+DF(x ))A is a compact operator.
0

Proof: Set C - (-Q+DF(x ))A. To prove (i), let <Yhn >  be a bounded

0 n
sequence in Y. Since C is compact, any subsequence <Cyh  > of <Cyh >

nk n

has a convergent subsequence <Cy > . If y is the limit, then
n

lIP h  Cyh - I I I I Ph Cyh h yll + Ih Y - yll
n n n n n n o

ct CYh -yf I + lipI y lyI- 0'
nk nk
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where IIPhH < for sufficiently small h (by the uniform boundedness

principle). Consequently, any subsequence of <Ph Cyh > has a convergent
n n

subsequence and hence PhC C. (ii) follows directly from a result of

- Vainikko [13; p. 654].

- Proposition 8.3(ii) remains true for certain nonseparable spaces Y as well.

However, most applications involve separable spaces and so there is no real

loss in stating the result as we did.

Proposition 8.3 effectively replaces the need for testing the discrete

I: convergence by a simple compactness condition on the operator (-Q+DF(x ))A

and thus represents a significant simplification. The projections Ph are

removed from consideration, and the condition appears to involve only A and

3 Q. We may actually go one step further and remove A from the picture. The

final condition, expressed in the next proposition, is a condition on Q and

Q alone.

Proposition 8.4: (-Q+DF(x ))A is compact if and only if -Q+DF(xo) is
00

compact.

Proof: Set K = -Q+DF(xo). If K is compact, obviously KA is compact.

So assume KA is compact. Let <Xn> be a bounded sequence in X. Since

X = VQ T, we can write xn = vn + tn and the sequences <vn> and <tn> of

components are bounded. Since dim T = m, <tn> has a convergent subsequence

<tn>. Set yn = A'vn; then <Yn> is a bounded sequence and hence, by the

compactness of KA, <KAyn > has a convergent subsequence <KAy >. Now it

follows that

• Kx = Kvn + Ktn KAYn + Kt,k k k i
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so that <Kxn  > converges. Therefore, K is compact.
k.

We summarize all the above implications and equivalences in a theorem.

Theorem 8.5: Let y 0 F(E), X = Z DA a parameter splitting of X,

X = V T a coordinate splitting for M at a given point xo e M, and

A: Y V an isonorphism. Suppose that an operator Q (7.2) and a basic

discretization are chosen and consider the following statements:

(i) stability condition (S) is satisfied;

(ii) DFh(xo)A DF(Xo)A; .

- r(iii) Dh (Xo)A DF(Xo)A; ,

(iv) Ph(-Q+DF(xo))A £ (-Q+DF(xo))A;

(v) (-Q+DF(Xo))A is a compact operator;

(vi) -Q+DF(x ) is a compact operator.0

Then the following implications hold:

()<>(ii) <=> (iii) <= (iv) <=(v) <>(vl).

If, in addition, Y is separable, (iv) <=> v).

Thus, condition (vi) becomes an extremely simple condition on the

operator Q alone which guarantees the stability condition (S). Since (iii) -

and (iv) are not equivalent, (vi) is not the only way to the stability

condition (S), but it is one of the easiest to apply.

*
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9. Applications

SisaIn this final section, we look at two applications. The first example

is a mildly nonlinear problem, whereas the second one is much more general

m in nature.

° .- a. Shallow Arch Subjected to a Load: This problem concerns the deformations

of a shallow circular elastic arch which has been used frequently as a test

case, and we refer specifically to [7]. In dimensionless form, the

-: total potential energy of the system is given by

- . 0

f (9.1) V = {[v' - u + Il(U')2 2 + t2(u,) 2  2c3P} do,
:. -e 0  o

where u and v are (dimensionless) displacements of the arch axis, the

primes denote differentiation with respect to the angle 6, 20 is the angle
0

subtended by the circular arph, p is the (dimensionless) load, and tI'2'03

are (dimensionless) constants. The load p = p(6,u,v,X) is permitted to be

a sufficiently differentiaile function of the variables O,u,v and of m

parameters Xl"'"...m which we represent as an m-vector X. For clamped

ends, the boundary conditions are

(9.2) u(+e o ) = u'(+o o ) = v(+e o) = 0.

4

* The principle of stationary potential energy applied to (9.1) yields the

pair of differential equations

v 2u '' ' ' - x c p u' - [v' - u + 1 l(U)2(l"+ )=0
[v, u+ a,(u, )2(a u,, + 1)-3u2u1" xla3Pu 2 " 3Pu 0

(9.3)

us1v - u +I U'U" + a3 Pv = 0.
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These equations (9.3) together with the boundary conditions (9.2) may be

formulated weakly as the problem of finding (u,v) E H [- 0 j H'[-00,oe

such that

<UP + <f(U'v,A)4> 0 0, E: H2 [-
0 0 0 0

(9.4)

<vp + <g(u,v,X),ip>o 0, Ep H 0 [-eo,eo],

whee fg: 2 .o X~ 1 [00 ~ m ~L 2~ [- ] are given by
0hr ~g ;- 0 eO 0 -e'o I 0 0

f~u~,X) - . {c~c±3~u'+ [v', u + L ct1 (u' )2](II+1 +t ~ 1

g(u,v,x) U, a ~u' u1 -t 3P.

and

f0
=Op f (i(i) i =0,1,2.

Suppose that p is such that f and g are C rmappings with r > 2.

We introduce linear operators k: H-2 [-0e 6 H~ 2 P ,e I and
0 00 0 0

e: H1-P 0 le H1 [..o,0J defined by

2  H2

<ku,o>2 =<u,Op 0 , u -H [-e 0 ] , H) 0 ,oe ]

100 0 0 0 0

k: 2 [0 2 [-
Then k:L [- ,0 e - H [-6 le I and t: L [- e0 - H [-6 a0 are compact

0 0 0 0 0 0 0 0 0 0

and (9.4) becomes simply
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1u + kf(u,v,X) 0,
(9.5)

v + Zg(u,v,x) = O.
2 Iooo

If we now set Y Ho[-ao0 6 x H 6 , X Y xR m, and define

K: H-P Ee x H_ [-6 le Y by K(u,v) = (ku,ev) and

G: X - L2 [e e I x L2 [- ,eo] by G(u,v,X) = (f(u,v,X),g(u,v,X)), then
0 0 0 0

(9.5) reduces further to

(9.6) F(w,X) E w + KG(w,X) 0, w = (u,v) e Y, X IRm.

Thus, the shallow-arch problem has been transformed into a mildly non-

linear problem (9.6), and a mildly nonlinear problem can be handled in a

m straightforward manner. With X and Y as above, there is a natural

parameter splitting X = ZO A, where Z = Y x {0} and A = {0} xIRm.

Consequently, a natural choice for the operator Q E L(X,Y) of (7.2) is the

projecti on

Q(w,x) =w, x (w,x) E X.

In terms of Q, (9.6) can be written as

F(x) = Qx + KG(x) = 0, x e X,

and hence -Q + DF(x o ) = KDG(x ) is compact for any xo. By Theorem 8.5,
0 0

the stability condition (S) is satisfied for any coordinate splitting X = VO T

and isomophism A: Y V, and the estimate (7.9) of Theorem 7.2 becomes

Sw(twh(t) my + lX(t)-Xh(t)1 IRm < C f (I-Ph)w(t)11 Y, t E Jo"
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Setting Phw =(pl)u ph2)v), we may write this estimate in terms of the

original displacements u and v as

l1u(t)-u h(t)1 H2 + I1v(t)-vh(t) Hll + IIX(t)-Xh(t)1 Im
0 0

< C {jl(I-Pl))u(t)l2 +  ((I- 2 )v(t)Hl1, t J
2H H0H0 0

b. A Nonlinear Dirichlet Problem: Let 0 be a bounded domain in IRd with

sufficieitly smooth boundary. As usual, we use the multi-index notation Du

for the partial derivatives of functions u defined on Q. If lal = --y t

and there is no danger of confusion, we write also DZu for the generic

derivatives Dau of order 11= C.

Let

F(u,X) a D(E,u,Du,...,D2u,X) = 0

be a given elliptic differential operator on Q. Here, e 0? is the space

variable and X ImD a parameter vector, and 0 denotes a sufficiently

differentiable function of all its arguments. Given any appropriate function

f defined on Q, we consider the nonlinear Dirichlet problem

(9.7) F(u,X) = f on Q,

(9.8) Du =0 on a for 0 < ltI < k-l.

Unlike the previous problem, which was transformed into a mildly nonlinear

problem, we analyze (9.7) and (9.8) directly. For a fixed scalar T, 0 < T < 1,

let W be the Banach space of functions in C2k'T(2) which satisfy the
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boundary conditions (9.8). Then set X = W x Rm and Y = CO'T( ). With

this, the Dirichlet problem (9.7)-(9.8) becomes simply

- (9.9) F(x) = f, x : (u,X) c X.

Again, we have a natural parameter splitting X = Z A with Z = W x {0}

and A = {0} xRm.

For x0 = UAo), the derivative DF(x o) is given by
0 0 0

DF(x )x = u F(x )u + D XF(Xo)X

. @ ( ,uo,Duo,...,D2kuo Au
.aI<2k a(Dau) 0.0 0 0

,D2kuo' )o

+*- (E,uo,Duo,..., ) , x = (u,X) s X.

Now assume that xo  is a solution of (9.9) where F(uoX o ) is strongly0 00

* elliptic; that is, where the partial derivative Du F(x ) is a strongly

elliptic linear differential operator. The principal part

(9.10) L = (,U,DU,...,D uX)D ,  x = (u,X) E X,
o " 1la=2k 3(Dau)

of D F(xo ) is then an isomorphism of W onto Y. Moreover, the remainingU 0

terms comprising D uF(x ) are all compact operators. For a proof of these

facts, we refer to [ 1 ; p. 686 ff.]. Hence, it follows that D F(x ) is a
u 0

. Fredholm operator from W to Y with index 0. Let PW and Pm be the

4m -M

projections of X onto W and IR , respectively. Then PW is a Fredholm

*operator of index m and in the decomposition

- * . -- h-
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oF( u o 0P W+ D AF(x 0)P

the term D F(x)Pi is compact. This shows that DF(x )is a Fredhoim
0 0

operator from X to Y of index mn. Therefore, if we assume that x 0  is

p..

a regular solution of (9.9), our theory applies.

The above discussion already suggests a choice for the operator

Q E L(X,Y) of (7.2), namely, Q = Lx . In fact, then -Q + DF(x ) is

compact and by Theorem 8.5 the stability condition (S) is satisfied for any

coordinate splitting X = V T and isomorphism A: Y - V. The estimate

(7.9) of Theorem 7.2 now takes the form

11u(t)-u h (0t ) l 2k T + 11X(t)- h (t)JI ~m< C JI((I-P h)LxoU(t)jjcOT ,t : Jo 0 ..-

where L is the principal part given in (9.10).
xo

4 ~-I

i:
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